Mixed-Mode Oscillations with Multiple Time Scales

نویسندگان

  • Mathieu Desroches
  • John Guckenheimer
  • Bernd Krauskopf
  • Christian Kuehn
  • Hinke M. Osinga
  • Martin Wechselberger
چکیده

Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there is an alternation between oscillations of distinct large and small amplitudes. MMOs have been observed and studied for over thirty years in chemical, physical, and biological systems. Few attempts have been made thus far to classify different patterns of MMOs, in contrast to the classification of the related phenomena of bursting oscillations. This paper gives a survey of different types of MMOs, concentrating its analysis on MMOs whose small-amplitude oscillations are produced by a local, multiple-time-scale “mechanism.” Recent work gives substantially improved insight into the mathematical properties of these mechanisms. In this survey, we unify diverse observations about MMOs and establish a systematic framework for studying their properties. Numerical methods for computing different types of invariant manifolds and their intersections are an important aspect of the analysis described in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

Mixed-Mode Oscillations in a Multiple Time Scale Phantom Bursting System

In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Releasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHughNagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest scale and acts by moving the slow null-cline of the forced system (Secretor). There are three modes of dynamics: p...

متن کامل

Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example

Mixed-mode dynamics is a complex type of dynamical behavior that is characterized by a combination of small-amplitude oscillations and large-amplitude excursions. Mixed-mode oscillations (MMOs) have been observed both experimentally and numerically in various prototypical systems in the natural sciences. In the present article, we propose a mathematical model problem which, though analytically ...

متن کامل

Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron.

Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. One characteristic feature of this ...

متن کامل

Survival of Subthreshold Oscillations: the Interplay of Noise, Bifurcation Structure, and Return Mechanism

Mixed mode oscillations (MMO’s) composed of subthreshold oscillations (STO’s) and spikes appear via a variety of mechanisms in models of neural dynamics. Two key elements that can influence the prominence of the STO’s are multiple time scales and time varying parameters near critical points. These features can lead to dynamics associated with bifurcation delay, and we consider three systems wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2012